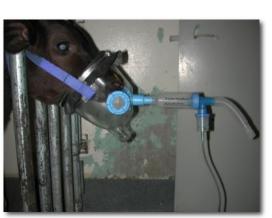
Programs to develop and evaluate next generation vaccines for bTB (models and reagents)

> Fred Quinn Department of Infectious Diseases College of Veterinary Medicine University of Georgia

Relevant Models

Cattle: DTH, CMI, IFN-γ (Bovigam), poor antibody response

Cervids: DTH (? accuracy), moderate antibody response


Camelids: poor DTH, good antibody response

Eurasian Badgers: Poor DTH, moderate CMI, antibody to MPB83 correlates w/bacterial load & ability to transmit, poor granuloma formation

Ferrets: DTH, good antibody response, moderate granuloma formation,

Pulsar.Two-worlds.com

Preventing bTB Transmission (natural route infection)

For various reasons (e.g. no sneezing/coughing, poor reagent availability), standard small animal aerosol infection models are not useful for studying transmission

Transmission models under study

Needed Tools and Reagents

Diagnostics: Is the animal infected or vaccinated?

Vaccines: Does the vaccine elicit a response and is this response protective?

Correlations to:

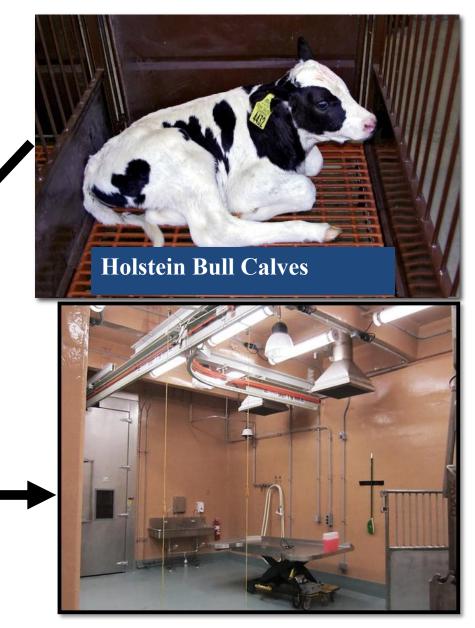
- Pathology: post-vaccination infection versus disease
- **Protection**: prevent, cure or prevent transmission?
- **Infection**: Active vs latent? Progressive, resolving, or cured?

Correlates of infection/Protection

During study

- **DTH** (**skin test**) -- indicative of prior exposure to *Mycobacterium* spp. but is NOT indicative of disease severity or protection elicited by vaccination
- Immune responses (blood and BAL)
 - **IFN-***γ* **responses** -- especially to specific antigens such as ESAT-6/CFP10, but PPDb also is useful. Are indicative of infection but do not necessarily correlate to protection elicited by vaccination
 - Patterns of response (multi cytokine / chemokine / etc. profile) qRTPCR
 - Humoral response to specific vaccine antigens
 - Central Memory Responses (TcM) correlates to reduced bacterial burden and reduced pathology
 - IL-17 correlates to pathology, pre-challenge responses may also correlate to protection
- **Bacterial culture** throat swab, nasal wash, feces, BAL
 - Quantitative (CFU)
 - Qualitative (MGIT)
- **Bacterial PCR** throat swab, nasal wash

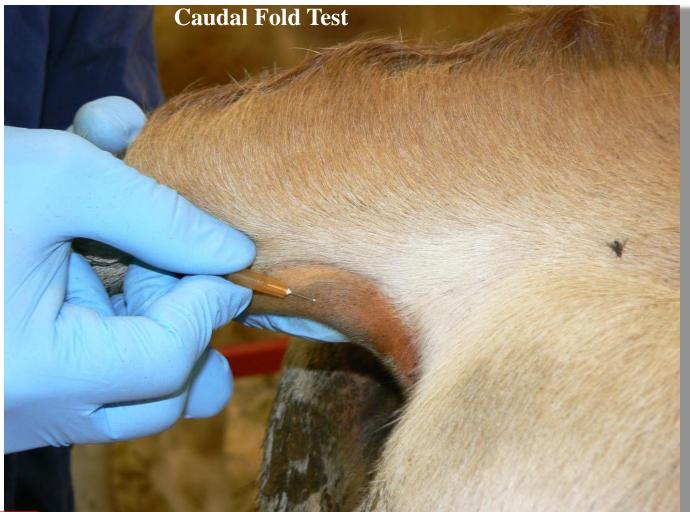
Post-study


- Organ pathology
- Organ bacterial culture

Neonatal Calf Vaccine Model

Challenge (10³ CFU *M. bovis* 95-1315, 3.5 months of age)

Vaccinate (2 wks of age), n ~ 10 /group



Necropsy (8 months of age)

bTB DTH

Indicative of exposure to *Mycobacterium* spp. but is NOT indicative of disease severity or protection elicited by vaccination

IFN-γ **Response to PPDb** does not always correlate to Pathology; however, it is a good correlate to Infection

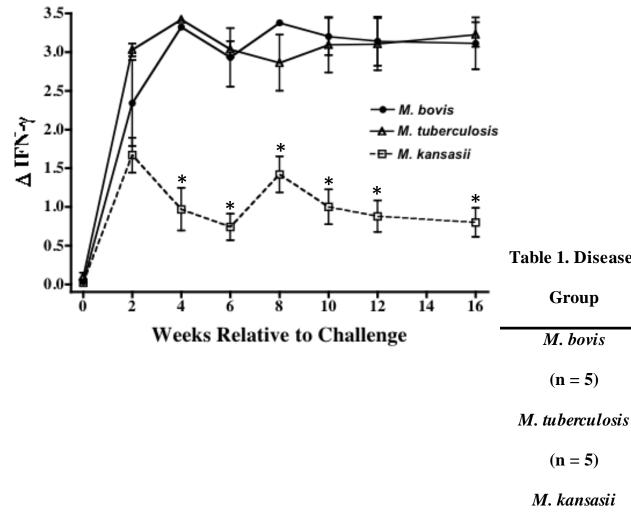


Table 1. Diseaseexpression upon mycobacterial inoculation.

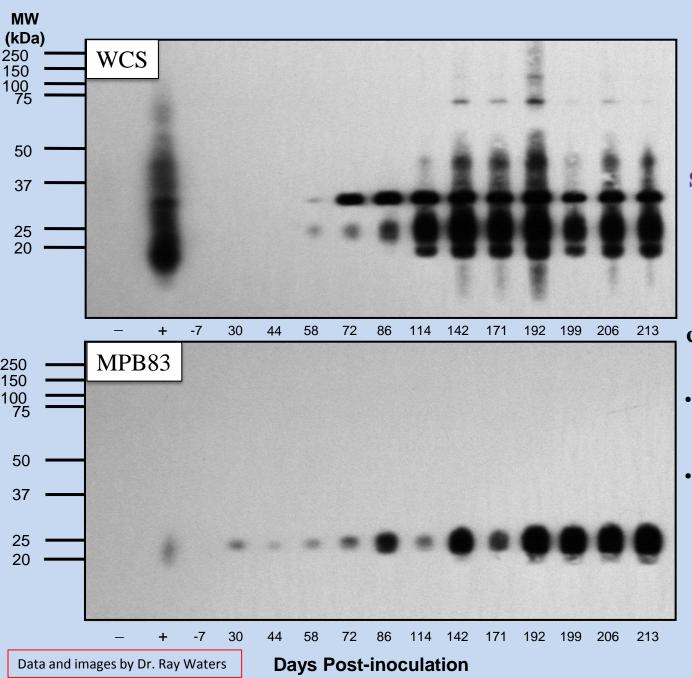
Gross Pathology^a

All positive

All negative

All negative

(n = 4)


Culture^b*

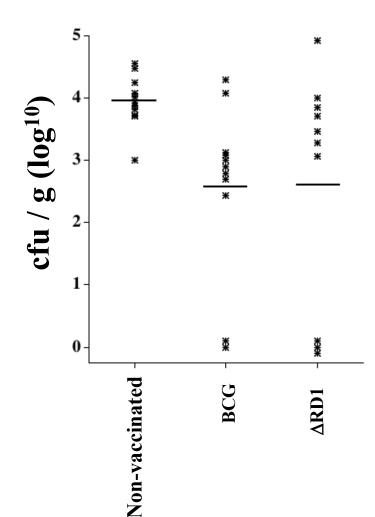
 27.2 ± 7.3

 13.9 ± 5.5

 0 ± 0

Data and ii	mages by	Dr. Ray	Waters
-------------	----------	---------	--------

Early and sustained antibody response does not always correlate to Pathology; however, it is a good correlate to current or prior Infection


- M. bovis strain 1315 whole cell sonicate (WSC)
- M. bovis strain 1315 MPB83 purified protein

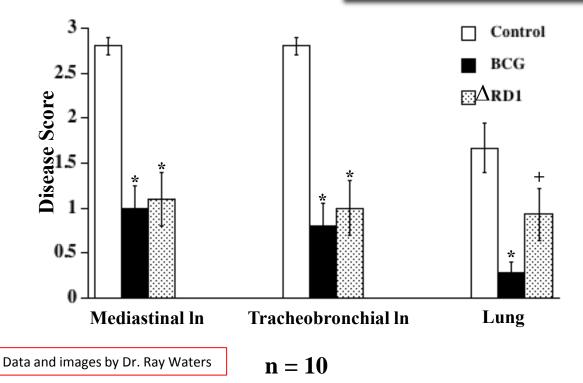
Quantitative Culture

Tracheobronchial lymph node

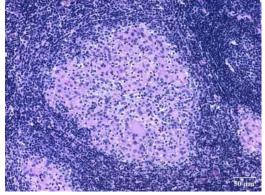
Qualitative Culture

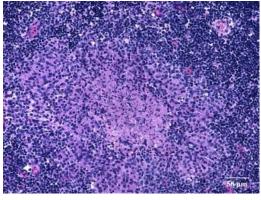
Tracheobronchial lymph node

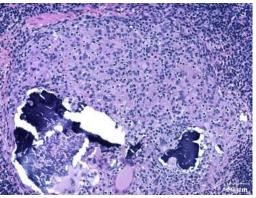
Animal (Non- vaccinated)	MGIT TLN	Animal (BCG- vaccinated)	MGIT TLN	Animal (ΔRD1- vaccinated)	MGIT TLN
1	+	11	+	21	+
2	+	12	-	22	+
3	+	13	+	23	+
4	+	14	-	24	+
5	+	15	+	25	-
6	+	16	+	26	-
7	+	17	+	27	+
8	+	18	+	28	+
9	+	19	+	29	-
10	+	20	+	30	+


Quantitative and Qualitative assessments provide useful information. Quantitative is more precise when available

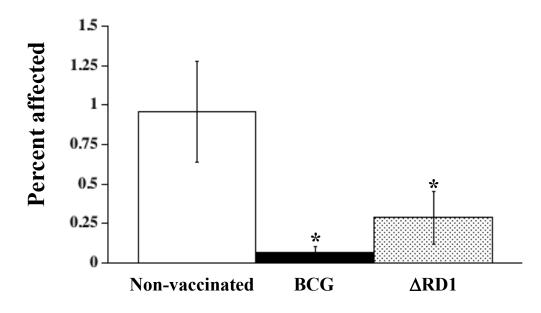
Gross and Histopathology, Disease Scoring



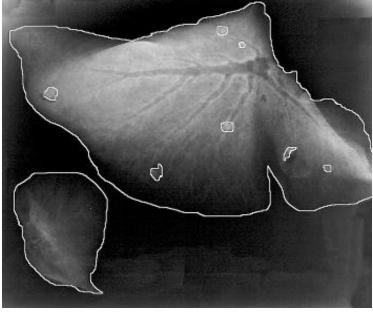

Date ----


Stage 1. Necrosis absent

Stage 2. Minimal necrosis


Stage 3. Necrosis

Stage 4. Mineralized


Original image

Radiograph Morphometry Mean ± SEM

Lungs with margins and lesions outlined

Opportunities / Relevance, Calf Model

- Large numbers of calves available throughout the year, including <u>neonates</u>
- Pulmonary distribution of lesions with oral/aerosol challenge
- Measurable transmission studies
- Nutritional status can be manipulated
- Additional vaccine safety screen especially for the neonate
- Long term immunity studies
- Correlates of protection studies
- Field trials possible w/ relevant disease interactions and constraints on platform

Limitations, Calf Model

- <u>Costly BSL-3 facilities due to size of animals</u>, 1 to 2 studies per year in AHRC
- Reagent availability now less of a problem

Opportunities / Relevance, Ferret Model

Intratracheal infection with *M.tb* strain Erdman

Skin test results - erythema and induration

Low dose

Wk 2 Wk 4 Wk 7	F#	NW MIGT	TS міgт	URT MIGT	Feces MIGT	St мібт	Lg мібт	CFU Lg	Sp мібт	CFU Sp	Lv MIGT	CFU Lv	CFU LN	Skin test	lgG
Mtb	13	n/a	n/a	-	-	-	+	+	-	+	n/a	n/a	n/a	n/a	-
	14	+	n/a	-	-	-	+	+	+	0	+	n/a	n/a	n/a	+
	15	n/a	n/a	-	-	-	+	+	+	+	n/a	n/a	+	n/a	-
	16	n/a	n/a	-	-	-	n/a	+	+	+	n/a	+	0	16	+
	17	n/a	n/a	+	+?	-	+	+	+	+	+	+	n/a	20	-
	18	n/a	n/a	-	-	-	n/a	+	+	+	n/a	0	+	16	-
					N	<u>/lec</u>	liu	m c	lose	5					

Wk 2 Wk 4		NW MIGT	TS MIGT	URT MIGT		St MIGT		CFU Lg	Sp MIGT	CFU Sp	Lv MIGT	CFU Lv	CFU LN	Skin test	lgG
Wk 7	7	-	n/a	-	-	-	+	+	+	+	-	n/a	+	n/a	+
Mtb	8	-	n/a	+?	-	-	+	+	+	+	-	n/a	+	n/a	+
	9	-	n/a	+?	+?	-	+	+	+?	+	-	n/a	+	n/a	+
	10	n/a	n/a	+?	-	-	+	+	+	+	-	+	+	16	-
	11	-	n/a	n/a	-	+	+	+	+	+	-	+	+	16	+
	12	-	n/a	n/a	-	-	+	+	+	0	-	0	+	16	+

High dose Mtb

Wk 2															
Wk4	F#	NW MIGT	TS MIGT	URT MIGT	Feces MIGT	St MIGT	Lg MIGT	CFU Lg	Sp MIGT	CFU Sp	Lv MIGT	CFU Lv	CFU LN	Skin test	IgG
Wk 7	1	-	+	-	-	-	+	+	-	+	-	n/a	+	n/a	+
	2	-	+	+	-	-	+	+	+	+	-	n/a	+	n/a	-
	3	+	+	+	-	-	+	+	-	+	-	n/a	+	n/a	+
	4	-	+	+	+	+	+	+	+	+	+	+	+	16	-
	5	+	+ +	+	++	+	+	+	+	+	-	+	+	13	-
	6	-	+	-	-	-	+	+	-	+	-	+	+	13	-

Conclusions

- Ferrets develop acute infection within 4 weeks using low dose installation
- Bacilli are detectable in the URT and nasal secretions of some low dose infected animals by 4 weeks post infection (pi) and in most medium and high dosed animals by 7 weeks pi.
- The PPD skin test is useful for following disease progression

Ongoing

• Long duration transmission study

Opportunities / Relevance, Ferret Model

- Large numbers of ferrets available throughout the year
- Pulmonary distribution of lesions with oral/aerosol challenge
- Potentially measurable transmission studies (ongoing for *Mtb*)
- Nutritional status can be manipulated
- Potential vaccine safety screen (planned for *Mtb*)
- Long term immunity studies (ongoing for influenza)
- Correlates of protection studies
- Reasonable cost; ease of manipulation

Limitations, Ferret Model

- No field studies; need to include a subsequent cow study
- Reagent availability now less of a problem

Mucosal Vaccine Candidate Platforms

Mycobacterium shottsii (Pathvac)

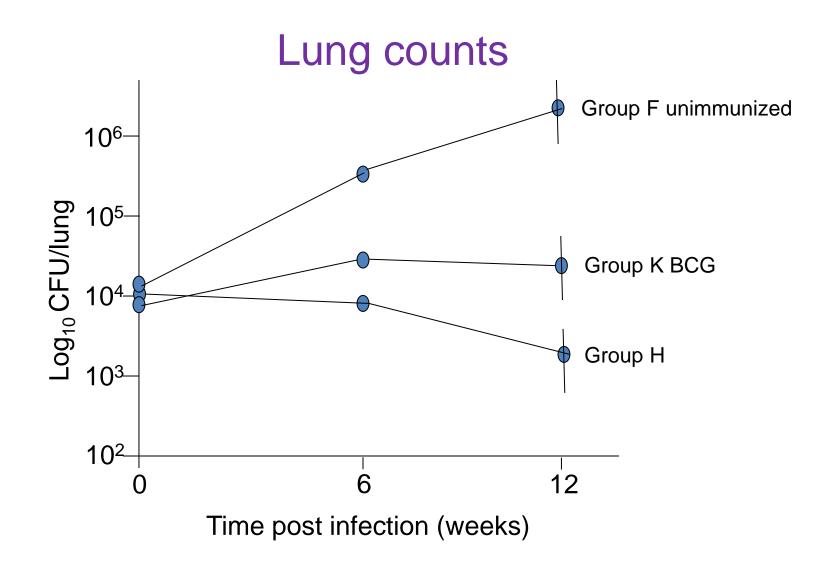
- Naturally cold-adapted/safe
 - grows optimally at 22-26°C; no growth >29°C
 - safe for immunocompromised humans
 - safety tested in mice and guinea pigs

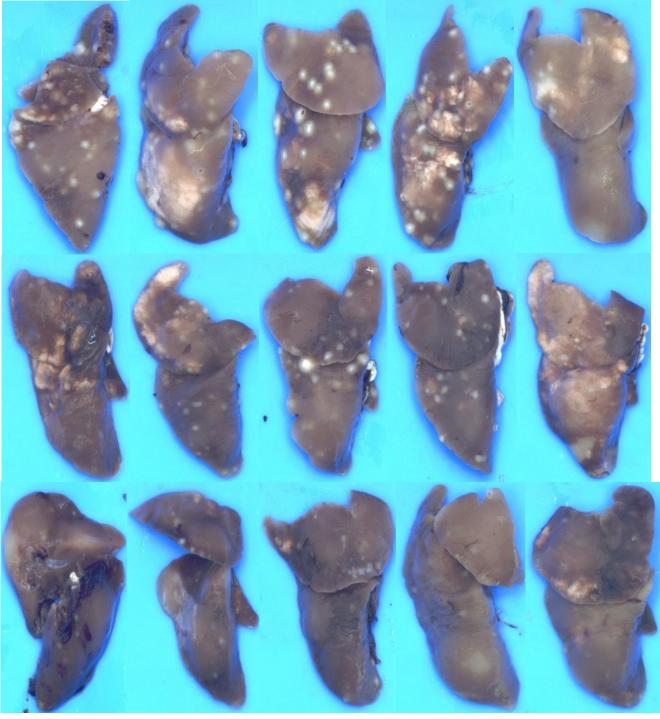
• Natural adjuvant/highly immunogenic

- cell wall chemistry very similar to Freund's incomplete adjuvant
- induces humoral and CMI responses
- can be cultured from nasal tissue (only) for several weeks
- no pre-existing vector immunity
- Efficacious/easily manipulated genome
 - candidates for *M. tuberculosis* have been protective
- Live mucosal (aerosol) vaccine
- Inexpensive to produce
- Genome stability
 - non-invasive (needle-free)


Parainfluenza Virus 5 (PIV5)

- Safe
 - Safety tested in mice, hamsters, guinea pigs, cotton rats, ferrets, cats, dogs, pigs, horses, monkeys, chickens and humans
- Highly immunogenic
 - induces both humoral and CMI responses
 - can be cultured from nasal tissues and lungs for several weeks
 - no pre-existing vector immunity
- Efficacious/easily manipulated genome
 - candidates for influenza, rabies, respiratory syncytial virus, HIV, Ebola, *Burkholderia mallei, Mycobacterium tuberculosis* have been protective
- Live mucosal (aerosol) vaccine
- Inexpensive to produce
- Genome stability
 - non-invasive (needle-free)

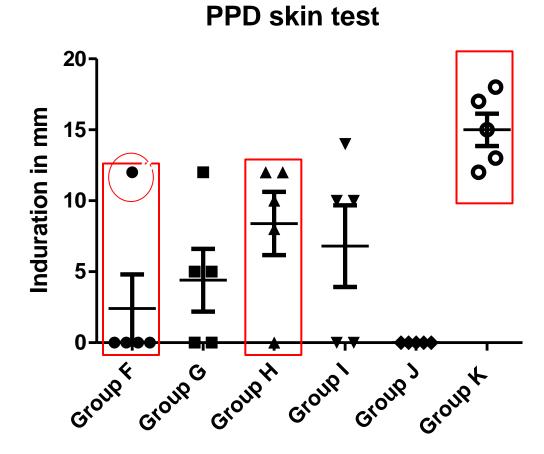

Bovine passive immunization


Can mucosal vaccination prevent transmission to calves?
Lower lung counts to prevent aerosol transmission

•Use Magpix diagnostic?

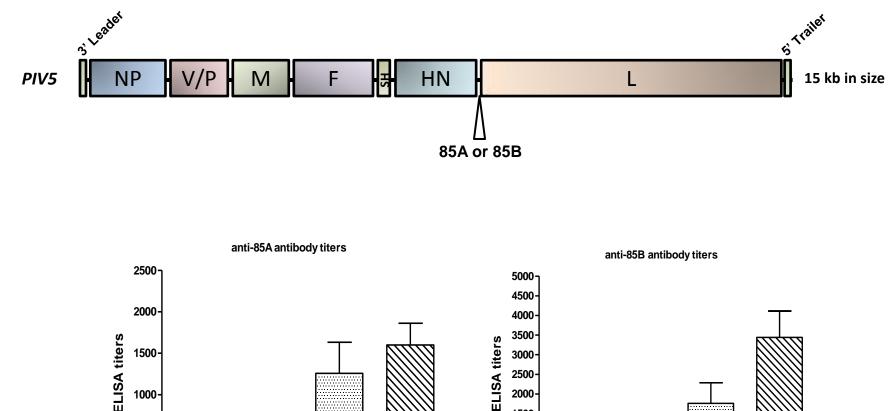
Group F – Unimmunized

6 weeks after infection

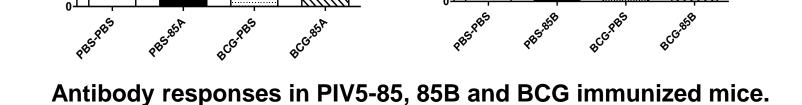

Group K - BCG 1 dose i.d.

Group H - 2 doses 3 wk apart i.n.

Group F – **Unimmunized**

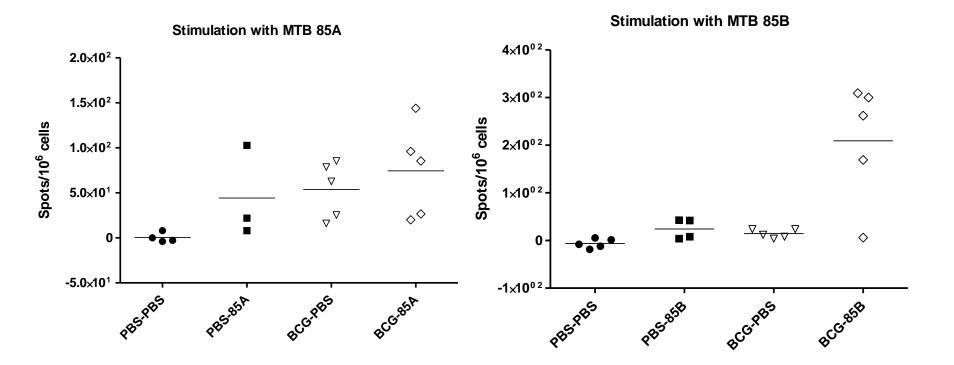

Group H - 2 doses 3 wk apart i.n.

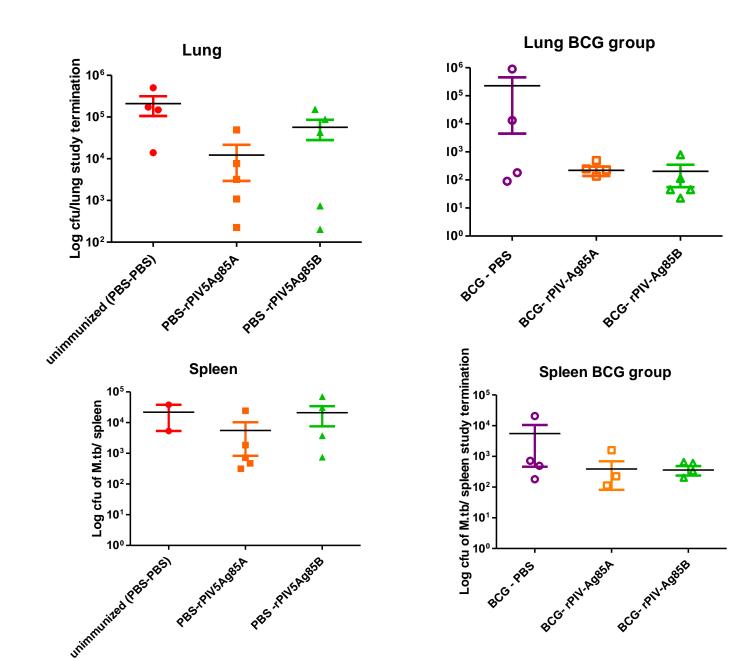
Group K - BCG 1 dose i.d.


Recombinant PIV5 expressing 85A or 85B of Mycobacteria Tuberculosis

1000

500·


0.


2000 1500

1000 500-0.

Cellular immune responses in PIV5-85, 85B and BCG immunized mice.

Mycobacterium tuberculosis load in PIV5-85, 85B and BCG immunized mice.

Summary and Future Directions

- Control of bTB may reside in implementation of an effective vaccine program
- Sterilizing immunity by a vaccine may not be attainable
 - <u>our goal for now might be prevention of disease transmission</u>
- Best model for testing vaccine efficacy and disease transmission is the cow,
 - <u>an appropriate small animal may be the ferret</u>
- Two new mucosal vaccines that decrease transmission potential are available and under investigation

Transmission models and and mucosal vaccines

U. Pittsburgh

JoAnne Flynn

<u>UGA</u> Russ Karls Biao He Tuhina Gupta Shelly Helms Monica LaGatta Simon Owino Tomislav John Gabbard

<u>CDC</u> Jamie Posey Melissa Wilby Thomas Rowe

<u>USDA</u> Ray Waters

<u>Texas A&M</u> David McMurray

<u>UGA high containment animal care staf</u>

Steve Harvey Wayne Jacobs Vicki Ellis Jeffrey Martin Renee Rohme

Southeastern Center for Emerging Biologic Threats

